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The Finite Sturm-Liouville Transform
By

A. Cemal Eringen
Illinois Institute of Technology

l. Introduction

It is known that certain partial differential equations
can be solved with the use of particular types of definite
integrals having appropriate kernels. The choice of kernel
depends on the type of boundary value problem. The solution
obtained by these transforms is direct in the sense that it
contains the boundary values in the solution. This, of course,
is lacking in the classical approach, Finite Fourier trans-
forms are of this type [1].

Recently Tranter [2], used a Legendre polynomial as a
kernel., Scott [3] following a similar approach used a Jacobi
polynomial as a kernel which extends the result of [2].

It is the purpose of the present paper to extend and
unify all such special transforms. Thus we employ a kernel
which may be determined to suit each particular type of problem.
The transform can be employed to solve a wide class of linear
second order partial differentisl eguations,

In this paper we deal only with those transforms whose
intervals are finite., Thus, the results obtained here are
particularly useful for finite domains, or domains which are
finite in one direction. An extension to infinite domains

and singular cases will be made in a later paper.

-1.
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2, The Sturm-Liouville Expansion

A second order, linear, homogeneous differential
equation containing an arbitrary parameter N has the
general form:

Mv = Po¥, yy tpv ot (pg *+ Apglv = O (1)

a, 4y £b,
where p, = p; (y); v and y are the dependent and real inde-
pendent variables,respectively, Indices after comma repre-
sent differentiation, i.e.: ¢ y " d¢/dy.

4

Equation (1) can be transformed into the canonical

form:
dz
Lu = \u , L = g(x) -T‘;z . agx<b (2)
where;

u=6@v, x=SLlpglp,)} 2ay

a b
a=J °(p3/po)1"2dy . b=J °(palpo)1/2dy & (3)

2] xx(x)

alx) = =T - $(x) ,  Olx) = (pgki/p)t/*

¢(x) = py/pg » k= expf(p;/p,)dy J
It is simpler te work with (2),

We consider two solutions ¢(x,\) and ')\(x,).) of (2)
satisfying the boundary conditions:

é¢(a,\) = sina , $ (&) = -cos a

(4)
\Sb,x) = sinp , X'x(b,x) = -cos

Both solutions are unique if qg(x) is real, continuous every-

wvhere in (a,b) and has finite limits for x = a and x = b
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(see [4j. p.6). We can build up #(x,\) and K(x,k) as a
linear combination of two independent solutions ﬁo(x,%.)
and Xp(x,‘h.) of (2); For let:

mo(k)é(x,h) - éo(x,k)[xo(a,%.) cos o+ Xo'x(a,x)sina]

- X_o(x,k)[éo(a,k)cos at ¢o,x(a,k)sina]
mo(%.)\fx,x) = bo(x,‘r\.)[&o(bm)cos g+ ’Ko'x(b,‘h)sinﬂ]

- Xo(x,x)[bo(b,k)cos B+ ¢°'x(b,7‘.)sinB]

\ (5)

woN) = W(to,xp) - ¢>°(x,x)\9'x(x,x) - ¢o,x(x,7‘.)’&°(x,7\.) )

Functions $(x,\) and )&(x,?&.) defined by (5) satisfy (2) and (4).
Here W(u,v) is the Wronskian, and can be shown to be indepen-

dent of x.

Let A, be a root of W(¢,X) = O. Then we have:
m(xn) = W(én,xn)'l ¢an,x - n,xXp =0

or

ﬁn,xl bn- Kn,x/\p

b, * ¢(x,xn) and Xn ’ \fx'."‘n)'
Hence the integration gives:

\(x,‘h.n) = knﬁ(x,kn) (6)

where:

Consequently ¢(x,\ ) and k #(x,\) satisfy all of the boundary
conditions (4).

It is also easy to show that é(x,%.n) is an orthogonal

set, For, in view of (2), (4) and (6) we have:
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b b
(7“m-7"n)f aémﬁndx - J‘a“m“’h"f’n_"‘m)d" - w“’m“’h) =0

Ong#h)
Hence we can write:

b
S $xag)blxng)dx = NS (7)

where 3 is the Kronecker delta (equal to zero for mfn,
one for m=n)

It can bs shown also that all roots of w(\) = O
are real and distinct (see [4], pp 11-12),

From (5) and (6) it follows that:
¢ (b, Ny )cosp + é (b,'ts.n)sinB
kn ¢ (a, ‘X. 7cosa + ¢ (a 7\.“7 sina

Xo(b N, )cosg + X.o (b, ) sind (8)
xp(a,%.?cosav"- K (&, ). Jsina

If now f(x) is an integrable function over (a,b) and if aixsb,

we have the Sturm-Liouville expansion of £(x):

b
f(x) = 2 [k /m (Nn)]é(x,,kn)f p(y, N ) E(y)dy (9)
n=o a n

For the convergence of (9) to f(x) see [4] pp 12-15 or [5]
pp275-276.

3. Finite Sturm-Liouville Transform

Let f(x) be a real continuous and inte'gg_able function of x,
in the interval (a,b). We define the finite Sturm-Liouville
transform S{f} - 'f(),,n) associated with system (2) and (4) by:

b
To) = 8{s}~- S £GPy dy (10)



where:

Yiyag) = [k fo, 01 28r) (11)

The inversion theorem now follows from (9):

0
f(x) = ¢ ‘f(xn)*(x,xn) (12)
n=o

Here functions *(y)kn) are orthonormal, i.e.:
b
J‘aif(x,m.n)ﬂr(x,xm)dx -3 (13)

This is readily seen from (7) and (11l).
Equations (10) and (12) are basic for the solution of some

partial differential equations.

&, Transform of Lf

We are now going to prove that:
' 2, 5 .2
S, {Lf} = 8, {ae - o’/ ex’} = B On 1)
+ AT, t) (14)

where:
B ,t) = [k fo, )2 { - £(b,t)508
£ n° n’mN M { ‘ n
- _ sin
f,x(b,t) " + f(a,t)cosa *flx,(a,t)sina} (15)
is a function depending on the boundary values of f(x,t),
£ x(x,t) at x = a,b, Subscript f implies that the function B
contains boundary values of the function f. Here Sx Tepre-
sents the finite Sturm-Lioville transform taken with respect

to x:
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Sd #(x, 1)} = B, t) (16)

To prove (14) we mutliply Lf by *(x,kn) and integrate
between (a,b), that is, by definition we have:

s,,{u} = P ra)E(x,t) - a%E/axP I (x,n ) dx (17)
a

Integrating the second term in the integrand of (17) twice
by part we obtain:

S{LE} = (£, ¥ - ¥ £10 {b £(x,)L¥(x,n )ax  (18)

If we now use (4) and (6) in the first term of the right
hand side and (2) inside the integrand we obtain (14).

S. Solution of Some Partial Differential Equations

a) Let us consider a parabolic partial differential

equation
Mv + P4V ¢ = ] (19)

where Mv is defined by (1), Py = pi(y,t) are known and
v(y,t) is the unknown dependent variable,

The use of transformation (3) reduces (19) to:

Uax t (N - p(x,t)Ju + (p4/p3)u;t =0 (20)

where:
2 4 2
p(x,t) = g(x,t) - p4p°( k/2po) 3{4polp3 k¢) (21)

Here g(x,t), k(t) and \n(t) are given by (3) with t as a
parameter. If ¢$(x,t,» ) and *(x,t,xn) are now obtained as

before except with g(x) replaced by p(x,t), t a parameter,



and p4jp3 a function of t alone, then (20), with the use
of the finite Sturm-Liouville transform, can be reduced
to an ordinary differential egquation in t. For, let
P4/pg = r(t), then application of the transform to (20)

ygives:

-Bu(xn,t) ('A.-}\.n)ﬁ‘(xn,t) + r(t)iat(xn,t) = Q (22)

Equation (22) is of first order. The complete solution is:

E'('A. t) =Ccin, )exp(,ft n - dt) +[exp (j't n - dt)] o

SYB /1) fexp (ot RZD “ =X dt)jat (23)
Now, inversion theorem (12) gives:
u(x,t) -ar? u LY (xt ) (24)
n=o

Therefore, the solution of (19) is effected. We must, however,
remember that at least one of each pair of boundary values
u?a,t), u.x(a,t) and u(b,t), u'x(b,t) must be known., By
selecting a and B properly in Bu(kn,t) we can make the terms
containing the unknown pair zero, Of course any knowledge of
the boundary values of u leading to the complete evaluation
of B, is sufficient for the solution,

4b) A second order linear partial differential equation

containing a parameter \ has the general form:

Nv + av + A + (as + Na7)v = Q

(25)
Nv = alv,zz * 2‘2',21 * °3v,vr



where a = ai(z,T). If the equation is of elliptic type

we have:
2
ajag - ag” »o0 (26)

Consider now an elliptic equation (25). Let :(z,7) =
const. and n(z,t) = const., respectively be the solutions
of the following differential equations:

dv/dz = §,(z,7) dv/dz = §,(z,7)
a a 1/2
If we set:

2y = ¢ +n , 2it =% - q (28)

equation (25) can be transformed into the canonical form [6]:

Vyy TPV, y t (Pg v Apg)v oy 4 vy =0 (29)

where:

PL = Py , py = 2a5/B , Py = 2a,/B

Py = éPt . B = al(y,z2 * t,zz) * zaz(y;zy,r * t,zt,r)

+agly et D (30)
Here operator P is defined by:

Pp = Nop + a4¢’z + asé'T (31)
and N¢ is given by the second of (25).

Using the transformation (3) with P, = 1, (29) becomes:

U xx + (N - plu + iU + TU 44 = (o] (32)



where:

™ - . - - "'1
p=qlx,t) - m,g . mg 44 ¢+ Ty = Pg

I; = mp,g * 2mg't , 9= (pskz)-1/4'

- (k2/p33)1/4 (33)

In the special case where I, and r, re functions of t alone
equation (32) can be transformed into an ordinary differential
equation by applying the finite Sturm-Liouville transform,

Hence:

ro'ﬁ"tt + rl'ﬁ't + ('A.-xn)i(m.n,t) - Bu('“'nvt’ (34)

We can now either use transformation (3) with respect to t,
with Ige I} replacing Por Py and Py = 0, Pg = 1l and find
the solution of (34) and then invert it or we can solve (34)
directly for u(n_,t) and then (24) gives ulx,t).

It must be remembered that this method has the advantage
that it contains the boundary values of the function within
the solution, consequently, the difficulty of satisfying
boundary conditions is eliminated. The method is also valid

in the cases where the usual technique of separation of

variables fail.

6. Solutions ¢, and KO of Some Special Equations

Below are given two independent solutions ‘o and KO
of some special differential equations (D. E.) of mathe-
matical physics. Their canonical forms (2) will be given
by only determining u, g, and A.
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a) Bessel Functions

2
1 2 _v -
V'yy + ¥ V,y + (s ;Z-)V 0 (D. E.)

¢°(x,7\.) - x1/2 J, (xs) |, )&o(x,k) - xllev (xs)

Interval (a,b) should not contain x = O,

b) Spherical Harmonics

2
[(l-yz)v y] + [vi(v+l) - u’—zlw =0 (D, E.)
A 4 l-y .
. 1/2, - sin x q = -lian2x-1,
u vV cCos ¢ ¥ 8in v c—oi'zx— T an i
n=vl) , p(x,\) = cost/Zx ¢ PB(stn x ),

)(_o(x,k) - cosl/? x 'Qv“(sin x )

Interval (a,b) should not contain (-1, 1l).

c) Hermite Polynomials

Yy  Vytw=0 (D. E.)

u_.'12/4" y-x,q--%-‘fzf-,k-n,

$,(x,\) = e'x2,4 He (x) , 7(0(::,7\.) - e'xzuhen(x)
d) Tschebyscheff Polynomials

(l-yz)'v'yy R AR nly = 0 (D. E.)

u=v , y=8ginx, g=0 , x-nz

$,(x,\) = T (sin x) = cos n(sin”ly) ’

Ko("” = Un(sin x) = sin‘n(sin'ly)
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e) Mathieu Functions

“,xx + (N - ZhZcostju =0 (D, E.)

¢°(x,x) - cozn(x), °°2n+l(x) . sezn(x), 82n+l(x)

Rotxn) = o (B ), cayy1 (0, o)

(2)(x)

8on+l

(n =0, 1, 2, ... except for se, only n =1, 2, vee)
¢°(x,k) is periodic.
f) Wittaker Punctions

1 2
T
v'yy+ ('%+§"3-—-;2—')V‘0 (Do Eo)
2 2
1/2 2 1 -17 . x
u= (x/2)%, y=x%4, q=BAL.
/ = s

boxn) = MW P, X = w2t/

W (-x"/4) (2¢)

Interval (a,b) should not contain x = O,

7. Application

As an illustration we solve a heat conduction problem
which may be looked upon as a mathematical model of volcanos,
The problem also has application in the exhaust parts of jet
engines, As far as I know the problem has not previously

been solved.

%* Here comma does not mean differentiation.
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Consider the conical sheel enclosed by two coaxial

cones having the same apex O, and two concentric spheres

having O as their center (Fig. 1l).

T R S

'

te
g
H
g‘
‘&"‘:

~ <
Spherical Spherical
sur face s:iiace
r=r, 1l
Fig. 1

In polar coordinates the inner and outer conical
surfaces are given by © = eo and © = 61, and the end

surfaces by r = r_andr = Tye

Problen: Do:ornino the steady temperature distribution
within the. shell under the general axi-symmetric boundary
conditions in temperature. This is the general Dirichlet
problem for the domain under consideration., The differential

equation and boundary conditions (B, C.) are given below:
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- (D, o = - -
(D. E.) AV =1 “(r V,r), +r “[(l-y )V,Y].Y 0

r
(35)
y=cos® ,r {r{r; , 6,08
(B. C.) v = Vo(r) for © = 8,
T rr
V=V () for®=86 0<T <)
1l 1
(36)
V= Vs(e) for r = I,
6,<6<8,

\'s V4(6) for r = r

Here V(r,y) is the temperature function, r and © are the
polar coordinates.

Solution: We can exclude the second term of (D. E.) (35)
if we use a finite Sturm-Liouville transform associated with

the Legendre equation:

[(l-yz)v'y],y +v(v+l)v = 0 (37)

In view of (6, b) withp = O we find that if we select
1/2

y = s8in x, u = v cos x we can transform (37) to canonical

form leading to solutions:

$o(x\) = cost/2%x ° P, (sin x) , Xo(x,k) = cosl/? x

° Q, (sin x) 3 N = yvel) (38)

where Pv and Q, are Legendre functions of the first and
second kind, respectively. In view of (14), when we apply the
transform to (35) the second term gives - vn(vn*l) - By (x.,\,)e
Now B' contains four arbitrary functions which must be
specified on the surfaces € = eo and € = 61. The terms con-

taining the derivatives of v are not given., Thus if we
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select a = B = O these terms drop out, leaving the terms
containing v (r) and vl(r), which are given. Hence
é(x,\) and w () of (S) become:
p(x,\) = cosllzxo cosllzx [Pv(sin x)Qv(ain xo)
- P, (sin x )Q, (sin x) x =%-0_,
v o} OV ] ’ .: (39)
n =
xl = ‘2' - el P m°(7\o) 1

' By (11) and (8) we have:

€ rmemen

*xay) = ko, 0012 sxn)

cost/? (40)

172

cos

x) Pvn(Si“ xl)

3
&
A
ol
&

kn

X, P;n(sin xo)

Calculation of w(\) = ¢ X‘x - )( $ . gives
o) = cosllzxo cosllzxl (P, (sin x_)Q, (sin xl)
(41)
- P, (sin x;)Q, (sin x )]
Consequently, the roots n, = v_(v +1) of w(\) = O satisfy
the following equation
P, (sin x;) . Q, (sin x,) (42)
Ev!sIn.xoi O Teln xo)
Therefore *(x,xh) is completely determined,

/2,

After transforming (35) with y = sin x and u =V cos
we apply the finite Sturm-Liouville transform. That is, we
multiply the equation by *(x,hh) and integrate between x, and

Xp. The result is:
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(e27 ) L = v (v +1)T = Bylr )

' ,r
(43)
Bylrany) = [k o IV AV (1) - & 71V, ()]
Equation (43) is an ordinary differential equation of Euler
type whose solution can be found by variation of parameters,
Hence:
- A v,-1
Vir,v,) =Cy v ir 7+ Cylv )r + Flr,v )
(44)

n A/

(p,N.) v_ =v_ =1 -v_=lw
Plrvy) =T AEm g N g

Let the transforms of V3(6) and V4(6) be 73(vn) and 74(vn).
Cl and C2 will then be determined from the remaining conditions:

Ve Vs(vn) , forr=rx,

- - 8 £ 01
V= V4(Jn) » for r=rx; o& 1

This gives two linear egquations for Cl and C2 whose solutions

are: - -vn-l - -vn-l
N [Vé(vn)-P(ro,vn)]r -LV4(vn)-F(§;!vn)]ro
v )= v v =l v “v_=1
17n r, n ry n -Iy h T, n
(45)
Vo v,
C. v ) [V;(vn)-P(;;,vn)ro [V v )-Flx v )Ir,
2''n Va -vﬁ-l' Y -vh-l
I, ry Iy I,

Hence, V(r,vn) is completely determined. The inversion theorem
(12) now gives:

Vir,x) =2 Tlr,v )¥(x,n) (46)

where the summation is extended over all roots of (42).
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The analysis given above is formal. It can, however,
be made rigorous by showing that the solution satisfies both
the differential equation and the boundary conditions,.

It may be worth while to remark that with the use of
the method of separation of variables the solution of the

above problem would have been difficult and lengthy, if not
impossible,
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